<pre id="zvzzz"><del id="zvzzz"><thead id="zvzzz"></thead></del></pre>
    <ruby id="zvzzz"><mark id="zvzzz"><thead id="zvzzz"></thead></mark></ruby><p id="zvzzz"></p>
    <p id="zvzzz"><mark id="zvzzz"></mark></p>

      <del id="zvzzz"><mark id="zvzzz"><progress id="zvzzz"></progress></mark></del>

        <p id="zvzzz"></p>

              <ruby id="zvzzz"></ruby>
                <ruby id="zvzzz"></ruby><p id="zvzzz"></p>
                您當前的位置:首頁>工業自動化>自動控制原理與設計(第六版 英文版)

                自動控制原理與設計(第六版 英文版)

                資料類別:工業自動化

                文檔格式:PDF電子版

                文件大。54.65 MB

                資料語言:中文

                更新時間:2021-02-07 11:11:18



                推薦標簽: 自動控制 設計 原理 英文版 第六版

                內容簡介

                自動控制原理與設計(第六版 英文版)

                自動控制原理與設計(第六版 英文版)
                作者:(美)富蘭克林 著
                出版時間:2013年版
                內容簡介
                  《自動控制原理與設計(英文版)(第6版)》是自動控制領域的經典著作,以自動控制系統的分析和設計為主線,在回顧自動控制系統動態響應和反饋控制的基本特性基礎上,重點介紹了自動控制系統的三種主流設計方法,即根軌跡設計法、頻率響應設計法和狀態空間設計法。此外,還闡述了非線性系統的分析與設計,給出了一系列經典控制系統設計實例。全書在闡述自動控制原理和設計方法的過程中,適時地穿插有MATLAB仿真源代碼和仿真實驗結果。
                目錄
                1 An Overview and Brief History of Feedback Control
                A Perspective on Feedback Control
                Chapter Overview
                1.1 A Simple Feedback System
                1.2 A First Analysis of Feedback
                1.3 A Brief History
                1.4 An Overview of the Book
                Problems
                2 Dynamic Response
                A Perspective on System Response
                Chapter Overview
                2.1 Review of Laplace Transforms
                2.1.1 Response by Convolution
                2.1.2 Transfer Functions and Frequency Response
                2.1.3 The L Laplace Transform
                2.1.4 Properties of Laplace Transforms
                2.1.5 Inverse LaplaceTransform by Partial-Fraction Expansion
                2.1.6 The Final Value Theorem
                2.1.7 Using Laplace Transforms to Solve Problems
                2.1.8 Poles and Zeros
                2.1.9 Linear System Analysis Using MATLAB
                2.2 System Modeling Diagrams
                2.2.1 The Block Diagram
                2.2.2 Block Diagram Reduction Using MATLAB
                2.3 Effect of Pole Locations
                2.4 Time-Domain Specifications
                2.4.1 Rise Time
                2.4.2 Overshoot and Peak Time
                2.4.3 Settling Time
                2.5 Effects of Zeros and Additional Poles
                2.6 Stability
                2.6.1 Bounded Input–Bounded Output Stability
                2.6.2 Stability of LTI Systems
                2.6.3 Routh’s Stability Criterion
                2.7 Historical Perspective
                Problems
                3 A First Analysis of Feedback
                A Perspective on the Analysis of Feedback
                Chapter Overview
                3.1 The Basic Equations of Control
                3.1.1 Stability
                3.1.2 Tracking
                3.1.3 Regulation
                3.1.4 Sensitivity
                3.2 Control of Steady-State Error to Polynomial Inputs: SystemType
                3.2.1 System Type for Tracking
                3.2.2 System Type for Regulation and Disturbance Rejection
                3.3 The Three-Term Controller: PID Control
                3.3.1 Proportional Control (P)
                3.3.2 Proportional Plus Integral Control (PI)
                3.3.3 PID Control
                3.3.4 Ziegler–Nichols Tuning of the PID Controller
                3.4 Introduction to Digital Control
                3.5 Historical Perspective
                Problems
                4 The Root-Locus Design Method
                A Perspective on the Root-Locus Design Method
                Chapter Overview
                4.1 Root Locus of a Basic Feedback System
                4.2 Guidelines for Determining a Root Locus
                4.2.1 Rules for Plotting a Positive (180°) Root Locus
                4.2.2 Summary of the Rules for Determining a Root Locus
                4.2.3 Selecting the Parameter Value
                4.3 Selected Illustrative Root Loci
                4.4 Design Using Dynamic Compensation
                4.4.1 Design Using Lead Compensation
                4.4.2 Design Using Lag Compensation
                4.4.3 Design Using Notch Compensation
                4.4.4 Analog and Digital Implementations
                4.5 A Design Example Using the Root Locus
                4.6 Extensions of the Root-Locus Method
                4.6.1 Rules for Plotting a Negative (0°) Root Locus
                4.7 Historical Perspective
                Problems
                5 The Frequency-Response Design Method
                A Perspective on the Frequency-Response Design Method
                Chapter Overview
                5.1 Frequency Response
                5.1.1 Bode Plot Techniques
                5.1.2 Steady-State Errors
                5.2 Neutral Stability
                5.3 The Nyquist Stability Criterion
                5.3.1 The Argument Principle
                5.3.2 Application to Control Design
                5.4 Stability Margins
                5.5 Bode’s Gain–Phase Relationship
                5.6 Closed-Loop Frequency Response
                5.7 Compensation
                5.7.1 PD Compensation
                5.7.2 Lead Compensation
                5.7.3 PI Compensation
                5.7.4 Lag Compensation
                5.7.5 PID Compensation
                5.7.6 Design Considerations
                5.8 Historical Perspective
                Problems
                6 State-Space Design
                A Perspective on State-Space Design
                Chapter Overview
                6.1 Advantages of State-Space
                6.2 System Description in State-Space
                6.3 Block Diagrams and State-Space
                6.3.1 Time and Amplitude Scaling in State-Space
                6.4 Analysis of the State Equations
                6.4.1 Block Diagrams and Canonical Forms
                6.4.2 Dynamic Response from the State Equations
                6.5 Control-Law Design for Full-State Feedback
                6.5.1 Finding the Control Law
                6.5.2 Introducing the Reference Input with Full-State Feedback
                6.6 Selection of Pole Locations for Good Design
                6.6.1 Dominant Second-Order Poles
                6.6.2 Symmetric Root Locus (SRL)
                6.6.3 Comments on the Methods
                6.7 Estimator Design
                6.7.1 Full-Order Estimators
                6.7.2 Reduced-Order Estimators
                6.7.3 Estimator Pole Selection
                6.8 Compensator Design: Combined Control Law and Estimator
                6.9 Introduction of the Reference Input with the Estimator
                6.9.1 A General Structure for the Reference Input
                6.9.2 Selecting the Gain
                6.10 Integral Control and Robust Tracking
                6.10.1 Integral Control
                6.11 Historical Perspective
                Problems
                7 Nonlinear Systems
                Perspective on Nonlinear Systems
                Chapter Overview
                7.1 Introduction and Motivation: Why Study Nonlinear Systems?
                7.2 Analysis by Linearization
                7.2.1 Linearization by Small-Signal Analysis
                7.2.2 Linearization by Nonlinear Feedback
                7.2.3 Linearization by Inverse Nonlinearity
                7.3 Equivalent Gain Analysis Using the Root Locus
                7.3.1 Integrator Antiwindup
                7.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions
                7.4.1 Stability Analysis Using Describing Functions
                7.5 Historical Perspective
                Problems
                8 Control System Design: Principles and Case Studies
                A Perspective on Design Principles
                Chapter Overview
                8.1 An Outline of Control Systems Design
                8.2 Design of a Satellite’s Attitude Control
                8.3 Lateral and Longitudinal Control of a Boeing 747
                8.3.1 Yaw Damper
                8.3.2 Altitude-Hold Autopilot
                8.4 Control of the Fuel–Air Ratio in an Automotive Engine
                8.5 Control of the Read/Write Head Assembly of a Hard Disk
                8.6 Control ofRTP Systems in SemiconductorWafer Manufacturing
                8.7 Chemotaxis or How E. Coli Swims Away from Trouble
                8.8 Historical Perspective
                Problems
                Appendix Solutions to the Review Questions

                特別提示:本資源需要會員組權限,普通注冊用戶無法下載.
                上一章:競賽機器人的創新與實踐:上海大學自強隊10年歷程 下一章:自動控制原理:理論篇 第二版

                相關文章

                接地設計與工程實踐 [叢遠新 編著] 2014年 高清可編輯文字版 國際電氣工程先進技術譯叢 旋轉電機的絕緣——設計、評估、老化、試驗、修理 (原書第2版) 高清可編輯文字版 精選工業電器電路原理圖析與實用檢修 高清可編輯文字版
                手机在线欧美亚洲91
                <pre id="zvzzz"><del id="zvzzz"><thead id="zvzzz"></thead></del></pre>
                  <ruby id="zvzzz"><mark id="zvzzz"><thead id="zvzzz"></thead></mark></ruby><p id="zvzzz"></p>
                  <p id="zvzzz"><mark id="zvzzz"></mark></p>

                    <del id="zvzzz"><mark id="zvzzz"><progress id="zvzzz"></progress></mark></del>

                      <p id="zvzzz"></p>

                            <ruby id="zvzzz"></ruby>
                              <ruby id="zvzzz"></ruby><p id="zvzzz"></p>